Predict Stock Future With Trend Line Slope |
//www.aflcode.com EnableScript("VBScript"); <% ' Called by ARG_Burg AFL funct. to compute Ki in Double Precision function Compute_KI(f, b, W, i, LongBar) n = LongBar - 1 for j = i to n Num = Num + cDBL(W(j))*( cDBL(f(j))*cDBL(b(j-1)) ) Den = Den + cDBL(W(j))*( cDBL(f(j))^2 + cDBL(b(j-1))^2 ) next KI = 2*Num/Den Compute_KI = KI end function function Gaussian_Elimination (GE_Order, GE_N, GE_SumXn, GE_SumYXn) Dim b(10, 10) Dim w(10) Dim Coeff(10) for i = 1 To 10 Coeff(i) = 0 next n = GE_Order + 1 for i = 1 to n for j = 1 to n if i = 1 AND j = 1 then b(i, j) = cDBL(GE_N) else b(i, j) = cDbl(GE_SumXn(i + j - 2)) end if next w(i) = cDbl(GE_SumYXn(i)) next n1 = n - 1 for i = 1 to n1 big = cDbl(abs(b(i, i))) q = i i1 = i + 1 for j = i1 to n ab = cDbl(abs(b(j, i))) if (ab >= big) then big = ab q = j end if next if (big <> 0.0) then if (q <> i) then for j = 1 to n Temp = cDbl(b(q, j)) b(q, j) = b(i, j) b(i, j) = Temp next Temp = w(i) w(i) = w(q) w(q) = Temp end if end if for j = i1 to n t = cDbl(b(j, i) / b(i, i)) for k = i1 to n b(j, k) = b(j, k) - t * b(i, k) next w(j) = w(j) - t * w(i) next next if (b(n, n) <> 0.0) then Coeff(n) = w(n) / b(n, n) i = n - 1 while i > 0 SumY = cDbl(0) i1 = i + 1 for j = i1 to n SumY = SumY + b(i, j) * Coeff(j) next Coeff(i) = (w(i) - SumY) / b(i, i) i = i - 1 wend Gaussian_Elimination = Coeff end if end function %> function PolyFit(GE_Y, GE_BegBar, GE_EndBar, GE_Order, GE_ExtraB, GE_ExtraF) { BI = BarIndex(); GE_N = GE_EndBar - GE_BegBar + 1; GE_XBegin = -(GE_N - 1) / 2; GE_X = IIf(BI < GE_BegBar, 0, IIf(BI > GE_EndBar, 0, (GE_XBegin + BI - GE_BegBar))); GE_X_Max = LastValue(Highest(GE_X)); GE_X = GE_X / GE_X_Max; X1 = GE_X; GE_Y = IIf(BI < GE_BegBar, 0, IIf(BI > GE_EndBar, 0, GE_Y)); GE_SumXn = Cum(0); GE_SumXn[1] = LastValue(Cum(GE_X)); GE_X2 = GE_X * GE_X; GE_SumXn[2] = LastValue(Cum(GE_X2)); GE_X3 = GE_X * GE_X2; GE_SumXn[3] = LastValue(Cum(GE_X3)); GE_X4 = GE_X * GE_X3; GE_SumXn[4] = LastValue(Cum(GE_X4)); GE_X5 = GE_X * GE_X4; GE_SumXn[5] = LastValue(Cum(GE_X5)); GE_X6 = GE_X * GE_X5; GE_SumXn[6] = LastValue(Cum(GE_X6)); GE_X7 = GE_X * GE_X6; GE_SumXn[7] = LastValue(Cum(GE_X7)); GE_X8 = GE_X * GE_X7; GE_SumXn[8] = LastValue(Cum(GE_X8)); GE_X9 = GE_X * GE_X8; GE_SumXn[9] = LastValue(Cum(GE_X9)); GE_X10 = GE_X * GE_X9; GE_SumXn[10] = LastValue(Cum(GE_X10)); GE_X11 = GE_X * GE_X10; GE_SumXn[11] = LastValue(Cum(GE_X11)); GE_X12 = GE_X * GE_X11; GE_SumXn[12] = LastValue(Cum(GE_X12)); GE_X13 = GE_X * GE_X12; GE_SumXn[13] = LastValue(Cum(GE_X13)); GE_X14 = GE_X * GE_X13; GE_SumXn[14] = LastValue(Cum(GE_X14)); GE_X15 = GE_X * GE_X14; GE_SumXn[15] = LastValue(Cum(GE_X15)); GE_X16 = GE_X * GE_X15; GE_SumXn[16] = LastValue(Cum(GE_X16)); GE_SumYXn = Cum(0); GE_SumYXn[1] = LastValue(Cum(GE_Y)); GE_YX = GE_Y * GE_X; GE_SumYXn[2] = LastValue(Cum(GE_YX)); GE_YX2 = GE_YX * GE_X; GE_SumYXn[3] = LastValue(Cum(GE_YX2)); GE_YX3 = GE_YX2 * GE_X; GE_SumYXn[4] = LastValue(Cum(GE_YX3)); GE_YX4 = GE_YX3 * GE_X; GE_SumYXn[5] = LastValue(Cum(GE_YX4)); GE_YX5 = GE_YX4 * GE_X; GE_SumYXn[6] = LastValue(Cum(GE_YX5)); GE_YX6 = GE_YX5 * GE_X; GE_SumYXn[7] = LastValue(Cum(GE_YX6)); GE_YX7 = GE_YX6 * GE_X; GE_SumYXn[8] = LastValue(Cum(GE_YX7)); GE_YX8 = GE_YX7 * GE_X; GE_SumYXn[9] = LastValue(Cum(GE_YX8)); GE_Coeff = Cum(0); GE_VBS = GetScriptObject(); GE_Coeff = GE_VBS.Gaussian_Elimination(GE_Order, GE_N, GE_SumXn, GE_SumYXn); for (i = 1; i <= GE_Order + 1; i++) printf(NumToStr(i, 1.0) + " = " + NumToStr(GE_Coeff[i], 1.9) + "\n"); GE_X = IIf(BI < GE_BegBar - GE_ExtraB - GE_ExtraF, 0, IIf(BI > GE_EndBar, 0, (GE_XBegin + BI - GE_BegBar + GE_ExtraF) / GE_X_Max)); GE_X2 = GE_X * GE_X; GE_X3 = GE_X2 * GE_X; GE_X4 = GE_X3 * GE_X; GE_X5 = GE_X4 * GE_X; GE_X6 = GE_X5 * GE_X; GE_X7 = GE_X6 * GE_X; GE_X8 = GE_X7 * GE_X; GE_X9 = GE_X8 * GE_X; GE_X10 = GE_X9 * GE_X; GE_X11 = GE_X10 * GE_X; GE_X12 = GE_X11 * GE_X; GE_X13 = GE_X12 * GE_X; GE_X14 = GE_X13 * GE_X; GE_X15 = GE_X14 * GE_X; GE_X16 = GE_X15 * GE_X; GE_Yn = IIf(BI < GE_BegBar - GE_ExtraB - GE_ExtraF, -1e10, IIf(BI > GE_EndBar, -1e10, GE_Coeff[1] + GE_Coeff[2] * GE_X + GE_Coeff[3] * GE_X2 + GE_Coeff[4] * GE_X3 + GE_Coeff[5] * GE_X4 + GE_Coeff[6] * GE_X5 + GE_Coeff[7] * GE_X6 + GE_Coeff[8] * GE_X7 + GE_Coeff[9] * GE_X8)); return GE_Yn; } function Time_weighting(data, window, BegBar, EndBar) { BI = BarIndex(); if (window == "Log") alphatime = log(Cum(1)); if (window == "Ramp") alphatime = Cum(1); if (window == "Exp") alphatime = exp(Cum(0.01)); alphatime = Ref(alphatime, -BegBar); alphatime = alphatime - alphatime[BegBar]; alphatime = alphatime / alphatime[EndBar]; alphatime = IIf(BI < BegBar, 0, IIf(BI > EndBar, 0, alphatime)); return alphatime*data; } function Volume_HighLow_weighting(data, coef_vol, coefdim, period, scale, translation) { // Coefficient Volume highvol = V; highvol = HHV(Median(V, 5), 5000); nbr_vol = coef_vol*highvol/(1 - coef_vol) + 1; alpha_vol = V/nbr_vol; alpha_vol = IIf(alpha_vol > 0.99, 0.99, alpha_vol); alpha_vol = IIf(alpha_vol < 0.01, 0.01, alpha_vol); // Coefficient High/Low (Adpated from FRAMA from John Ehlers) coefdim = coefdim * 2 - 0.01; N = 2*floor(period/2); delta1 = HHV(Ref(High, -N/2), N/2) - LLV(Ref(Low, -N/2), N/2); delta2 = HHV(High, N/2) - LLV(Low, N/2); delta = HHV(High, N) - LLV(Low, N); Dimen = log((delta1 + delta2)/delta)/log(2); alphadim = exp(-coefdim*Dimen); alphadimnorm = Min(Max(alphadim, 0.01), 0.99); // Mix Volume and High/Low, and scale them with Inverse Fisher Tansform alpha = alphadimnorm + alpha_vol; data_av = scale*(alpha - translation); alpha = (exp(2*data_av) - 1)/(exp(2*data_av) + 1); alpha = Min(Max(alpha,0.01),0.99); return alpha*data; } function Filter_GAP_EOD(data) { time_frame = Minute() - Ref(Minute(), -1); time_frame = IIf(time_frame < 0, time_frame + 60, time_frame); time_frame = time_frame[1]; day_begin = 152900 + 100*time_frame; day_end = 215900; delta = 0; timequote = TimeNum(); for (i = 1; i < BarCount; i++) { if (timequote[i] == Day_begin) delta = data[i] - data[i-1]; data[i] = data[i] - delta; } return data; } function T3(data, periods, slope) { // High Order Low-Pass filter e1 = EMA(data, periods); e2 = EMA(e1, periods); e3 = EMA(e2, periods); e4 = EMA(e3, periods); e5 = EMA(e4, periods); e6 = EMA(e5, periods); c1 = -slope*slope*slope; c2 = 3*slope*slope + 3*slope*slope*slope; c3 = -6*slope*slope - 3*slope - 3*slope*slope*slope; c4 = 1 + 3*slope+slope*slope*slope + 3*slope*slope; result = c1*e6 + c2*e5 + c3*e4 + c4*e3; return result; } function f_centeredT3(data, periods, slope) { // Centered T3 Moving Average slide = floor(periods/2); centeredT3 = data; centeredT3 = Ref(T3(data,periods,slope),slide); centeredT3 = IIf( IsNan(centeredT3) OR !IsFinite(centeredT3) OR IsNull(centeredT3), data, centeredT3); return centeredT3; } function f_detrend(data, BegBar, EndBar, ExtraF, method_detrend, PF_order) { // Detrend data BI = BarIndex(); LongBar = EndBar - BegBar + 1 ; detrended[0] = 0; if (method_detrend == "Log10") detrended = log10(data); if (method_detrend == "Derivation") detrended = data - Ref(data, -1); if (method_detrend == "Linear Regression") { x = Cum(1); x = Ref(x,-1); x[0] = 0; x = Ref(x, -BegBar); a = LinRegSlope(data, LongBar); a = a[EndBar]; b = LinRegIntercept(data, LongBar); b = b[EndBar]; y = a*x + b; global detrending_parameters; detrending_parameters = y; y = IIf(BI < BegBar, -1e10, IIf(BI > EndBar + ExtraF, -1e10, y)); Plot( y, "Linear Regression", ParamColor( "Color Linear Regression", colorCycle ), ParamStyle("Style") ); detrended = data - y; } if (method_detrend == "PolyFit") { Yn = PolyFit(data, BegBar, EndBar, PF_order, 0, ExtraF); Yn = Ref(Yn, -ExtraF); global detrending_parameters; detrending_parameters = Yn; Yn = IIf(BI < BegBar, -1e10, IIf(BI > EndBar + ExtraF, -1e10, Yn)); Plot( Yn, "PolyFit", ParamColor( "Color PolyFit", colorCycle ), ParamStyle("Style") ); detrended = data - Yn; } return detrended; } function f_retrend(data, Value_BegBar, BegBar, EndBar, method_detrend) { BI = BarIndex(); retrended = -1e10; if (method_detrend == "Log10") { retrended = 10^(data); } if (method_detrend == "Derivation") { retrended[BegBar] = Value_BegBar; for (i = BegBar + 1; i < EndBar + 1; i++) retrended[i] = data[i] + retrended[i-1]; } if (method_detrend == "Linear Regression") { retrended = data + detrending_parameters; } if (method_detrend == "PolyFit") { retrended = data + detrending_parameters; } return retrended; } function durbinlevison(Autocorr, OrderAR, LongBar, AutoOrder, AutoOrder_Criterion) { // for Yule Walker method only // Initialization AR_Coeff = 0; alpha[1] = noise_variance[1] = Autocorr[0]; beta[1] = Autocorr[1]; k[1] = Autocorr[1] / Autocorr[0]; AR_Coeff[1] = k[1]; // Initialize recursive criterion for order AR selection if (AutoOrder == 1) { FPE = AIC = MDL = CAT = CIC = -1e10; CAT_factor = 0; CIC_product = (1 + 1/(LongBar + 1))/(1 - 1/(LongBar + 1)); CIC_add = 1 + 1/(LongBar + 1); } // Main iterative loop for (n = 1; n < OrderAR; n++) { // Compute last coefficient for (i = 1; i < n + 1; i++) AR_Coeff_inv[n+1-i] = AR_Coeff[i]; temp = 0; for (i = 1; i < n + 1; i++) temp = temp + Autocorr[i] * AR_Coeff_inv[i]; beta[n+1] = Autocorr[n+1] - temp; alpha[n+1] = alpha[n] * (1 - k[n]*k[n]); k[n+1] = beta[n+1] / alpha[n+1]; AR_Coeff[n+1] = k[n+1]; // Compute other coefficients by recursion for (i = 1; i < n + 1; i++) New_AR_Coeff[i] = AR_Coeff[i] - k[n+1] * AR_Coeff_inv[i]; New_AR_Coeff[n+1] = AR_Coeff[n+1]; // Update AR_Coeff = New_AR_Coeff; noise_variance[n+1] = alpha[n+1]; if (AutoOrder == 1) { i = n + 1; // Compute criterions for order AR selection FPE[i] = noise_variance[i]*(LongBar + (i + 1))/(LongBar - (i + 1)); // Final Prediction Error AIC[i] = log(noise_variance[i])+2*i/LongBar; // Akaine Information Criterion MDL[i] = log(noise_variance[i]) + i*log(LongBar)/LongBar; // Minimum Description Length CAT_factor = CAT_factor + (LongBar - i)/(LongBar*noise_variance[i]); CAT[i] = CAT_factor/LongBar - (LongBar - i)/(LongBar*noise_variance[i]); // Criterion Autoregressive Transfer CIC_product = CIC_product * (1 + 1/(LongBar + 1 - i))/(1 - 1/(LongBar + 1 - i)); CIC_add = CIC_add + (1 + 1/(LongBar + 1 - i)); CIC[i] = log(noise_variance[i]) + Max(CIC_product - 1,3*CIC_add); // Combined Information Criterion } // End main iterative loop } if (AutoOrder == 1) { // Clean data because of rounding number for very low or very high value, and discard small changes FPE = IIf(abs(LinRegSlope(FPE, 2)/FPE[1]) < 0.005 OR abs(FPE) > 1e7, -1e10, FPE); AIC = IIf(log(abs(LinRegSlope(AIC, 2)/AIC[1])) < 0.005 OR abs(AIC) > 1e7, -1e10, AIC); MDL = IIf(log(abs(LinRegSlope(MDL, 2)/MDL[1])) < 0.005 OR abs(MDL) > 1e7, -1e10, MDL); CAT = IIf(log(abs(LinRegSlope(CAT, 2)/CAT[1])) < 0.005 OR abs(CAT) > 1e7, -1e10, CAT); CIC = IIf(abs(LinRegSlope(CIC, 2)/CIC[1]) < 0.005 OR abs(CIC) > 1e7, -1e10, CIC); // Find lower value Mixed_Order = 0; FPE_Order = Mixed_Order[1] = LastValue(Max(ValueWhen(FPE == Lowest(FPE) AND IsFinite(FPE), Cum(1), 1) - 1, 2)); AIC_Order = Mixed_Order[2] = LastValue(Max(ValueWhen(AIC == Lowest(AIC) AND IsFinite(AIC), Cum(1), 1) - 1, 2)); MDL_Order = Mixed_Order[3] = LastValue(Max(ValueWhen(MDL == Lowest(MDL) AND IsFinite(MDL), Cum(1), 1) - 1, 2)); CAT_Order = Mixed_Order[4] = LastValue(Max(ValueWhen(CAT == Lowest(CAT) AND IsFinite(CAT), Cum(1), 1) - 1, 2)); CIC_Order = Mixed_Order[5] = LastValue(Max(ValueWhen(CIC == Lowest(CIC) AND IsFinite(CIC), Cum(1), 1) - 1, 2)); // Mixed array is an averaging from all criterions taking in consideration order choose by criterions is often too low Mixed_Order_array = Median(Mixed_Order, 5); Mixed_Order = 2*ceil(Mixed_Order_array[5]); // Print informations about best order for each criterion printf("\nFPE Order : "+FPE_Order); printf("\nAIC Order : "+AIC_Order); printf("\nMDL Order : "+MDL_Order); printf("\nCAT Order : "+CAT_Order); printf("\nCIC Order : "+CIC_Order); printf("\n*** Mixed Order *** : "+Mixed_Order); // Mark best order in a[1] wich is returned at the end of the function if (AutoOrder_Criterion == "FPE") AR_Coeff[1] = FPE_Order; if (AutoOrder_Criterion == "AIC") AR_Coeff[1] = AIC_Order; if (AutoOrder_Criterion == "MDL") AR_Coeff[1] = MDL_Order; if (AutoOrder_Criterion == "CAT") AR_Coeff[1] = CAT_Order; if (AutoOrder_Criterion == "CIC (good)") AR_Coeff[1] = CIC_Order; if (AutoOrder_Criterion == "Mixed (best)") AR_Coeff[1] = Mixed_Order; } AR_Coeff[0] = alpha[OrderAR]; // noise variance estimator return AR_Coeff; } function AR_YuleWalker(data, BegBar, EndBar, OrderAR, Biased, AutoOrder, AutoOrder_Criterion) { BI = BarIndex(); Data_all = data; Data = IIf(BI < BegBar, 0, IIf(BI > EndBar, 0, Data)); LongBar = EndBar - BegBar + 1; // Window Hamming to make it more stable for non-biased estimator if (Biased == 0) { pi = atan(1) * 4; x = Cum(1); x = Ref(x,-1); x[0] = 0; W = 0.54 - 0.46*cos(2*pi*x/(LongBar-1)); Wi = Ref(W,-BegBar); data = Wi*data; } // Compute Autocorrelation function for (i = 0; i < OrderAR + 1; i++) { temp = 0; for (j = BegBar; j < EndBar + 1 - i; j++) { temp = temp + data[j]*data[j+i]; } if (Biased == 1) Autocorr[i]=(1/(LongBar))*temp; // biased estomator (best, model is always stable), small variance but less power if (Biased == 0) Autocorr[i]=(1/(LongBar-i))*temp; // non-biased estimator (model can be unstable), large variance } Autocorr=Autocorr/Autocorr[0]; // normalization (don't change result, to be less exposed to bad rounding) // Compute AR parameters with Durbin-Levison recursive algorithm for symmetric Toeplitz matrix (Hermitian matrix) AR_Coeff = durbinlevison(Autocorr, OrderAR, LongBar, AutoOrder, AutoOrder_Criterion); // End AR_Coeff = IIf(BI > OrderAR, -1e10, AR_Coeff); // usefull for AR_Pred and AR_Freq return AR_Coeff; // AR_Coeff[0] is noise variance estimator } function AR_Burg(data, BegBar, EndBar, OrderAR, Window, AutoOrder, AutoOrder_Criterion, DoublePrecision) { BI = BarIndex(); LongBar = EndBar - BegBar + 1; // LongBar = the number of data // Initialize recursive criterion for order AR selection if (AutoOrder == 1) { FPE = AIC = MDL = CAT = CIC = -1e10; CAT_factor = 0; CIC_product = (1 + 1/(LongBar + 1))/(1 - 1/(LongBar + 1)); CIC_add = 1 + 1/(LongBar + 1); } // Hamming window if selected if (Window == 1) { pi = atan(1) * 4; x = Cum(1); x = Ref(x,-1); x[0] = 0; W = 0.54 - 0.46*cos(2*pi*x/(LongBar-1)); } // Create data, forward and backward coefficients arrays y = Ref(data,BegBar); // y[0:LongBar-1] are the data y = IIf(BI < LongBar, y, 0); // to be sure not to compute future data f = b = y; // initialize forward and backward coefficients // Initialize noise variance estimate with data variance (= data autocorrelation[0]) noise_variance = Cum(y^2); noise_variance[0] = noise_variance[LongBar-1]/LongBar; // Main loop for (i = 1; i < OrderAR + 1; i++) { if (Window == 1) Wi = Ref(W,-i); // center Hamming Window else Wi = 1; b_shifted = Ref(b,-1); if (DoublePrecision == 0) { // single precision k_temp = Sum(Wi*f*b_shifted, LongBar - i)/Sum(Wi*(f^2 + b_shifted^2), LongBar - i); k[i] = 2*k_temp[LongBar - 1]; // k is reflection coefficient computed from i to LongBar - 1, like Burg tell it (!!! on Numerical Recipes it is computed from 1 to LongBar - i !!!) } /* -------------------------------------------------------------------------------------------------------------------------------------------- */ /* --- PART JUST BELOW ARE ONLY FOR EXPERIMENTATION ABOUT ROUNDING PROBLEM, COMPUTATION IS SLOWER AND THIS IS NOT NEEDED FOR SMALL AR ORDER --- */ // Use for FOR loop instead SUM function give different result (neither good, neither bad, but just different) because of rounding single-precision in AFL. De-comment this part to use FOR loop. /* Num = 0;Den = 0; for (j = i; j < LongBar; j++) { // compute from i to LongBar - 1, like Burg tell it (!!! on Numerical Recipes it is computed from 1 to LongBar - i !!!) Num = Num + Wi[j]*( f[j]*b[j-1] ); Den = Den + Wi[j]*( f[j]^2 + b[j-1]^2 ); } k[i] = 2*Num/Den; // k is reflection coefficient, a is AR coefficient */ /* --- END OF EXPERIMENTAL PART --- */ /* -------------------------------------------------------------------------------------------------------------------------------------------- */ // If you wish Double Precision, VBS script must be used (result are more precise than SUM or FOR loop, but computation is a lot more slower) if (DoublePrecision == 1) { // double precision KI_VBS = GetScriptObject(); KI = KI_VBS.Compute_KI(f, b, Wi, i, LongBar); k[i] = KI; } noise_variance[i] = (1 - k[i]^2)*noise_variance[i-1]; // update noise variance estimator if (AutoOrder == 1) { // Compute criterions for order AR selection FPE[i] = noise_variance[i]*(LongBar + (i + 1))/(LongBar - (i + 1)); // Final Prediction Error AIC[i] = log(noise_variance[i])+2*i/LongBar; // Akaine Information Criterion MDL[i] = log(noise_variance[i]) + i*log(LongBar)/LongBar; // Minimum Description Length CAT_factor = CAT_factor + (LongBar - i)/(LongBar*noise_variance[i]); CAT[i] = CAT_factor/LongBar - (LongBar - i)/(LongBar*noise_variance[i]); // Criterion Autoregressive Transfer CIC_product = CIC_product * (1 + 1/(LongBar + 1 - i))/(1 - 1/(LongBar + 1 - i)); CIC_add = CIC_add + (1 + 1/(LongBar + 1 - i)); CIC[i] = log(noise_variance[i]) + Max(CIC_product - 1,3*CIC_add); // Combined Information Criterion } // Update all AR coefficients for (j = 1; j < i; j++) a[j] = a_old[j] - k[i]*a_old[i-j]; a[i] = k[i]; // Store them for next iteration a_old = a; // Update forward and backward reflection coefficients f_temp = f - k[i]*b_shifted; b = b_shifted - k[i]*f; f = f_temp; // End of the main loop } if (AutoOrder == 1) { // Clean data because of rounding number for very low or very high value, and discard small changes FPE = IIf(abs(LinRegSlope(FPE, 2)/FPE[1]) < 0.005 OR abs(FPE) > 1e7, -1e10, FPE); AIC = IIf(log(abs(LinRegSlope(AIC, 2)/AIC[1])) < 0.005 OR abs(AIC) > 1e7, -1e10, AIC); MDL = IIf(log(abs(LinRegSlope(MDL, 2)/MDL[1])) < 0.005 OR abs(MDL) > 1e7, -1e10, MDL); CAT = IIf(log(abs(LinRegSlope(CAT, 2)/CAT[1])) < 0.005 OR abs(CAT) > 1e7, -1e10, CAT); CIC = IIf(abs(LinRegSlope(CIC, 2)/CIC[1]) < 0.005 OR abs(CIC) > 1e7, -1e10, CIC); // Find lower value Mixed_Order = 0; FPE_Order = Mixed_Order[1] = LastValue(Max(ValueWhen(FPE == Lowest(FPE) AND IsFinite(FPE), Cum(1), 1) - 1, 2)); AIC_Order = Mixed_Order[2] = LastValue(Max(ValueWhen(AIC == Lowest(AIC) AND IsFinite(AIC), Cum(1), 1) - 1, 2)); MDL_Order = Mixed_Order[3] = LastValue(Max(ValueWhen(MDL == Lowest(MDL) AND IsFinite(MDL), Cum(1), 1) - 1, 2)); CAT_Order = Mixed_Order[4] = LastValue(Max(ValueWhen(CAT == Lowest(CAT) AND IsFinite(CAT), Cum(1), 1) - 1, 2)); CIC_Order = Mixed_Order[5] = LastValue(Max(ValueWhen(CIC == Lowest(CIC) AND IsFinite(CIC), Cum(1), 1) - 1, 2)); // Mixed array is an averaging from all criterions taking in consideration order choose by criterions is often too low Mixed_Order_array = Median(Mixed_Order, 5); Mixed_Order = 2*ceil(Mixed_Order_array[5]); // Print informations about best order for each criterion printf("\nFPE Order : "+FPE_Order); printf("\nAIC Order : "+AIC_Order); printf("\nMDL Order : "+MDL_Order); printf("\nCAT Order : "+CAT_Order); printf("\nCIC Order : "+CIC_Order); printf("\n*** Mixed Order *** : "+Mixed_Order); // Mark best order in a[1] wich is returned at the end of the function if (AutoOrder_Criterion == "FPE") a[1] = FPE_Order; if (AutoOrder_Criterion == "AIC") a[1] = AIC_Order; if (AutoOrder_Criterion == "MDL") a[1] = MDL_Order; if (AutoOrder_Criterion == "CAT") a[1] = CAT_Order; if (AutoOrder_Criterion == "CIC (good)") a[1] = CIC_Order; if (AutoOrder_Criterion == "Mixed (best)") a[1] = Mixed_Order; } // End of the function, return AR coefficients and noise variance estimator for the current selected order in a[0] a = IIf(BI > OrderAR, -1e10, a); a[0] = noise_variance[i-1]; // usefull for AR_Pred and AR_Freq return a; } function AR_Predict(data, AR_Coeff, EndBar, ExtraF) { BI = BarIndex(); OrderAR = LastValue(BarCount - BarsSince(AR_Coeff) - 1); // Print some informations about AR coefficients and noise variance sum_coeffs = Cum(AR_Coeff) - AR_Coeff[0]; // ARCoeff[0] store noise_variance printf("\n\nNoise Variance Estimator : " + NumToStr(abs(AR_Coeff[0]), 1.9)); printf("\n\nSum of AR coeffs : " + NumToStr(sum_coeffs[OrderAR], 1.9)); for (i = 1; i < OrderAR + 1; i++) printf("\nCoeff AR " + NumToStr(i, 1.0) + " = " + NumToStr(AR_Coeff[i], 1.9)); // Pass the data into the AR filter data_predict = IIf(BI > EndBar, -1e10, Data); // clear data after EndBar for (i = Endbar + 1; i < EndBar + ExtraF + 1; i++) { data_predict[i] = 0; for (j = 1; j < OrderAR + 1; j++) data_predict[i] = data_predict[i] + AR_Coeff[j] * data_predict[i-j]; } /* -------------------------------------------------------------------------------------------------------------------------------------------- */ /* --- PART JUST BELOW IS ONLY IF YOU NEED RESIDUALS "u" FROM FILTERING PROCESS OR TO COMPARE IT WITH THE NOISE VARIANCE ESTIMATOR --- */ /* global BegBar; data_predict = IIf(BI > EndBar, -1e10, Data); for (i = BegBar + OrderAR; i < EndBar + 1 + ExtraF; i++) { data_predict[i] = 0; for (j = 1; j < OrderAR + 1; j++) { data_predict[i] = data_predict[i] + AR_Coeff[j] * data_predict[i-j]; } if (i > EndBar) u[i] = 0; else u[i] = data[i] - data_predict[i]; data_predict[i] = data_predict[i] + u[i]; } global noise_variance_filterburg; noise_variance_filterburg = StDev(u, EndBar - (BegBar + OrderAR) + 1); noise_variance_filterburg = noise_variance_filterburg[EndBar]^2; printf( "\n\nNoise variance from filtering process : " + NumToStr(noise_variance_filterburg, 1.9)); */ /* --- END OF RESIDUAL COMPUTATION PART --- */ /* -------------------------------------------------------------------------------------------------------------------------------------------- */ // Return data and data predicted from (EndBar + 1) to (EndBar + ExtraF) return data_predict; } function AR_Freq(AR_Coeff, step) { BI = BarIndex(); pi2 = atan(1) * 8; OrderAR = LastValue(BarCount - BarsSince(AR_Coeff) - 1); AR_Coeff=-AR_Coeff; noise_variance = abs(AR_Coeff[0]); if (noise_variance == 0) noise_variance = 0.000001; //seven-th digit to one S = -1e10; // usefull to determine the number of data for AR_Sin function f = Cum(1); f = Ref(f,-1); f[0] = 0; f = IIf(BI > 0.5/step, -1e10, f); f = step*f; // Danielson-Lanczos algorithm to fast compute exponential complex multiplication, using vector formulation AFL for multiple frequency in one-time recursion W_cos = cos(pi2*f); W_sin = sin(pi2*f); // initialize cos and sinus constant for each frequency f W_Re = 1; W_Im = 0; // initialize for recursion real and imaginary weight for AR coeffs Re = 1; Im = 0; // initialize real and imaginary part of the denominator from the spectrum function for (j = 1; j < OrderAR + 1; j++) { W_Re_temp = W_Re; // Begin Danielson-Lanczos part W_Re = W_Re*W_cos - W_Im*W_sin; W_Im = W_Im*W_cos + W_Re_temp*W_sin; // End Danielson-Lanczos part Re = Re + AR_Coeff[j]*W_Re; // real part of the denominator Im = Im + AR_Coeff[j]*W_Im; // imaginary part of the denominator } /* Just for experimentation about speed between classic and Danielson-Lanczos algorithm, here is basic computation */ //Re = 1; Im = 0; //for (j = 1; j < OrderAR + 1; j++) { Re = Re + AR_Coeff[j]*cos(pi2*f*j); Im = Im + AR_Coeff[j]*sin(pi2*f*j); } S = noise_variance/(Re^2+Im^2); // S the spectrum function Sdb = 10*log10(abs(s/noise_variance)); // Sdb the spectrum function in dB (power) with noise_variance as reference (so if Sdb is negative, power at this frequency is less than noise power) return Sdb; } function AR_Sin(S, nb_sinus) { // Initialization nb_data = LastValue(BarCount - BarsSince(S)); step = 0.5/nb_data; // Process data to keep only signifiant peaks slope = LinRegSlope(S,2); // derivation peaks = Ref(Cross(0, slope), 1); // find maximums of the spectrum value_peaks = IIf(peaks == 1 AND S > 0, S, 0); // erase maximum wich have less power than the noise // Find the reduced frequency of the most powerfull cycles sinus = -1e10; sinus[0] = 0; // to detect error or no cycle for (i = 0; i < nb_sinus; i++) { // save nb_sinus dominant cycles sinus[i] = BarCount - LastValue(HighestBars(value_peaks)) - 1; // save higher peak position value_peaks[sinus[i]] = 0; // erase new detected peak for next iteration } sinus = 1/(sinus*step); // convert reduced frequency in periods sinus[0] = Nz(sinus[0]); // no cycle found return sinus; } /* ---------------------------------------------------------------------- */ /* -------------------------------- DEMO -------------------------------- */ /* ---------------------------------------------------------------------- */ // Choice of the parameters empty = ParamList("Main parameters", "", 0); data_source = ParamField("Price field",-1); ARmodel = ParamList("AR Model", "Burg (best)|Yule-Walker", 0); length = Param("Length to look back", 200, 1, 5000, 1); OrderAR = Param("Order AR", 20, 0, 100, 1); ExtraF = Param("Number of bar to predict", 50, 0, 200, 1); AutoOrder = ParamToggle("Auto AR order", "No|Yes", 0); AutoOrder_Criterion = ParamList("Auto AR criterion", "FPE|AIC|MDL|CAT|CIC (good)|Mixed (best)", 5); HammingWindow = ParamToggle("Burg: Hamming Window", "No|Yes", 1); DoublePrecision = ParamToggle("Burg: Double Precision", "No|Yes", 0); Biased = ParamToggle("Y-W: Biased (Yes: best)", "No|Yes", 1); empty = ParamList("*** PRE-PROCESSING : ***", "", 0); empty = ParamList("1- Intraday EOD GAP Filter", "", 0); FiltrageGAPEOD = ParamToggle("Filtrage GAP EOD", "No|Yes", 0); empty = ParamList("2- Denoise", "", 0); periodsT3 = Param("Periods T3", 5, 1, 200, 1); slopeT3 = Param("Slope T3", 0.7, 0, 3, 0.01); empty = ParamList("3- Detrend", "", 0); method_detrend = ParamList("Detrending method", "None|Log10|Derivation|Linear Regression|PolyFit", 3); PF_order = Param("PolyFit Order", 3, 1, 9, 1); empty = ParamList("4- Center", "", 0); PreCenter = ParamToggle("Center data", "No|Yes", 1); empty = ParamList("5- Normalize", "", 0); PreNormalise = ParamToggle("Normalise data", "No|Yes", 1); empty = ParamList("6- Volume weight on data", "", 0); PonderVolHL = ParamToggle("Weighting Volume and H/L(Fractal)", "No|Yes", 0); coef_vol = Param( "Strength Volume (- +)", 0.5, 0.01, 0.99, 0.01); coefdim = Param( "Strength Fractal (- +)", 0.5, 0.01, 0.99, 0.01); period = Param( "Periods Fract (even)", 16, 2, 200, 2); scale = Param( "Scale Final Weights", 1, 0, 10, 0.01); translation = Param( "Translate Final Weights", 0.3, 0, 1, 0.01); empty = ParamList("7- Time weight on data", "", 0); PonderTime = ParamToggle("Weighting Time", "No|Yes", 0); PonderTimeWindow = ParamList("Weighting Time Window", "Log|Ramp|Exp", 0); empty = ParamList("*** POST-PROCESSING : ***", "", 0); method_retrend = ParamList("Retrending method", "Add back trend|Prediction without trend", 0); empty = ParamList("For Derivation or Log10 :", "add automatically the trend", 0); // Initialization SetBarsRequired(20000,20000); Title = ""; BI = BarIndex(); current_pos = SelectedValue( BI ) - BI[ 0 ];//1500 printf( "Position: " + NumToStr(current_pos) + "\n" ); // Adjust users choice depending number of bars data available or detrending/retrending necessity for derivation method if ( method_retrend == "Prediction without trend" AND (method_detrend == "Derivation" OR method_detrend == "Log10") ) method_retrend = "Add back trend"; BegBar = current_pos - length + 1; slide = floor(periodsT3/2); if (BegBar < 6*periodsT3) Title = Title + "\n\n\n\n\n\n!!! WARNING : YOU HAVE NOT ENOUGH DATA HISTORY FOR CORRECT T3 FILTERING - Reduce \"Periods T3\" parameter OR move Position Bar !!!\n\n\n\n\n\n"; if (BegBar < 1) { BegBar = 1; length = current_pos - slide; Title = Title + "\n\n\n\n\n\n!!! WARNING : YOU HAVE NOT ENOUGH DATA HISTORY - Reduce \"Length to look back\" parameter OR move Position Bar !!!\n\n\n\n\n\n"; } EndBar = current_pos - slide; if ( EndBar + ExtraF > BarCount - 1) { ExtraF = (BarCount - 1) - EndBar; } if (AutoOrder == 1) OrderAR = floor(length / 2); if (OrderAR >= length) { OrderAR = length - 1; Title = Title + "\n\n\n\n\n\n!!! WARNING : ORDER AR IS MORE HIGH THAN (LENGTH TO LOOK BACK - 1) - Reduce \"Order AR\" OR increase \"Length to look back\" parameters !!!\n\n\n\n\n\n"; } data = data_source; data_filtred = f_centeredT3(data, periodsT3, slopeT3); /* -------------------- BEGIN PROCESSING -------------------- */ // Filter GAP End of the days - only needed for intraday if (FiltrageGAPEOD == 1) data = Filter_GAP_EOD(data); // Denoise data data = f_centeredT3(data, periodsT3, slopeT3); // Detrend data if (method_detrend != "None") data = f_detrend(data, BegBar, EndBar, ExtraF, method_detrend, PF_order); data = IIf(BI < BegBar, 0, data); // fill with 0 before BegBar to be able to compute native MA Function AFL // Center data mean_data_before = MA(data, EndBar - BegBar + 1); printf( "\nMean data not centered : " + WriteVal(mean_data_before[EndBar]) + "\n" ); if (PreCenter == 1) { data = data - mean_data_before[EndBar]; mean_data_after = MA(data, EndBar - BegBar + 1); printf( "\nMean data centered : " + WriteVal(mean_data_after[EndBar]) + "\n\n" ); } // Normalize data if (PreNormalise == 1) { max_data = HHV(data, EndBar - BegBar + 1); data = data / max_data[EndBar]; } // Weigthing only for the data which will feed the AR_Burg function (modeling AR), not the AR_Pred function (prediction) data_weighted = data; // Volume and High/Low (Fractal) weighting if (PonderVolHL == 1) data_weighted = Volume_HighLow_weighting(data_weighted, coef_vol, coefdim, period, scale, translation); // Time weighting if (PonderTime == 1) data_weighted = Time_weighting(data_weighted, PonderTimeWindow, BegBar, EndBar); // Compute AR model if (ARmodel == "Burg (best)") { // Burg model (MEM method) (better than Yule-Walker for sharp spectrum and short data history) AR_Coeff = AR_Burg(data_weighted, BegBar, EndBar, OrderAR, HammingWindow, AutoOrder, AutoOrder_Criterion, DoublePrecision); if (AutoOrder == 1) { // In case of AutoOrder, a new computation to find coefficients with the ideal order is needed OrderAR = AR_Coeff[1]; AR_Coeff = AR_Burg(data_weighted, BegBar, EndBar, OrderAR, HammingWindow, 0, AutoOrder_Criterion, DoublePrecision); // Compute the AR from AutoOrder } } if (ARmodel == "Yule-Walker") { // Yule-Walker model (Autocorrelation method) AR_Coeff = AR_YuleWalker(data_weighted, BegBar, EndBar, OrderAR, Biased, AutoOrder, AutoOrder_Criterion); if (AutoOrder == 1) { // In case of AutoOrder, a new computation to find coefficients with the ideal order is needed OrderAR = AR_Coeff[1]; AR_Coeff = AR_YuleWalker(data_weighted, BegBar, EndBar, OrderAR, Biased, 0, AutoOrder_Criterion); // Compute the AR from AutoOrder } } noise_variance = abs(AR_Coeff[0]); // Prediction based on the computed AR model data_predict = AR_Predict(data, AR_Coeff, EndBar, ExtraF); // De-normalize if (PreNormalise == 1) { data_predict = data_predict * max_data[EndBar]; noise_variance = noise_variance * max_data[EndBar]; } // De-center if (PreCenter == 1) data_predict = data_predict + mean_data_before[EndBar]; // Add the trend back again if (method_detrend != "None" AND method_retrend == "Add back trend") data_predict = f_retrend(data_predict, data_filtred[EndBar], EndBar, EndBar + ExtraF, method_detrend); // Translate along value axis filtered EOD GAP data or not retrended data, so no gap occurs if (FiltrageGAPEOD == 1 OR method_retrend == "Prediction without trend") { delta = data_predict[EndBar + 1] - data_filtred[EndBar]; data_predict = data_predict - delta; data_predict = Ref(data_predict, 1); // so there is no discontinuity (but there is one data less for forward prediction) } // Plot AR Prediction and Burg predicted channels based on ATR and noise variance (if prediction is bad, channel will be larger) dataATR = ATR(periodsT3); // no need to detrend or center ATR before prediction (considerer centred without any trend) printf("\n\nATR AR model for Channel prediction :\n"); AR_Coeff_ATR = AR_Burg(dataATR, BegBar, EndBar, OrderAR, HammingWindow, OrderAR, AutoOrder_Criterion, DoublePrecision); data_predict_ATR = AR_Predict(dataATR, AR_Coeff_ATR, EndBar, ExtraF); DeltaBand = 2*(data_predict_ATR + noise_variance); Data_reconstruct = -1e10; Data_reconstruct = IIf( BI <= EndBar AND BI >= BegBar, data_filtred, IIf( BI > EndBar, data_predict, Data_reconstruct)); Plot(Data_reconstruct, "AR("+ NumToStr(OrderAR, 1.0) +") Prediction", IIf(BI > EndBar + slide, colorRed, IIf(BI > EndBar AND BI <= EndBar + slide, colorBlue, colorBrightGreen)), styleThick, Null, Null, 0); Plot(Data_reconstruct + DeltaBand, "AR("+ NumToStr(OrderAR, 1.0) +") Prediction Upper Channel", IIf(BI > EndBar + slide, colorRed, IIf(BI > EndBar AND BI <= EndBar + slide, colorBlue, colorBrightGreen)), styleDashed, Null, Null, 0); Plot(Data_reconstruct - DeltaBand, "AR("+ NumToStr(OrderAR, 1.0) +") Prediction Lower Channel", IIf(BI > EndBar + slide, colorRed, IIf(BI > EndBar AND BI <= EndBar + slide, colorBlue, colorBrightGreen)), styleDashed, Null, Null, 0); /* -------------------------------------------------------------------------------------- */ /* Demo for density spectrum power (DSP) analyse based on AR modeling (parametric method) */ // Compute spectrum based directly on AR model. Decomment following line to plot spectrum begining in first Bar (Bar[0]) Sdb = AR_Freq(AR_Coeff, 0.001); // 0.001 is the step for frequency resolution //Plot( Sdb, "Spectrum in decibels", ParamColor( "Color Spectrum in decibels", colorCycle ), ParamStyle("Style") ); // Look for the frequency which are the more powerfull (dominant cycles) sinus = AR_Sin(Sdb, 10); // 10 is the maximum number of frequency to look for Title = Title + "\nDominant periods: " + WriteIf(sinus[0] >= 0 AND IsFinite(sinus[0]), NumToStr(round(sinus[0]),1.0), ""); for (i = 1; i < 10; i++) Title = Title + WriteIf(sinus[i] > 0 AND IsFinite(sinus[i]), ", "+NumToStr(round(sinus[i]),1.0), "");
Sign up here with your email
ConversionConversion EmoticonEmoticon